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Fall 2018 Qualifying Exam

OPTIMIZATION

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer all 4 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Linear Programming

Recall the definitions of 1-norm and ∞-norm of a vector x ∈ Rn:

‖x‖1 :=

n∑
i=1

|xi|, ‖x‖∞ := max{|xi| : i = 1, . . . , n}.

Consider the following optimization problem:

min c>x

s.t. ‖Ax+ b‖1 ≤ 1.
(1)

In this formulation, the decision variables are x ∈ Rn, and the given data consists of

A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

(a) Formulate this problem as a linear program (LP) in inequality form and prove that

your LP formulation is equivalent to problem (1).

Hint 1: You may use additional variables.

Hint 2: Recall that you can show that two maximization problems (A) and (B) are

equivalent by showing: (i) For any feasible solution of (A) there is a feasible solution

of (B) with objective value not lower, (ii) For any feasible solution of (B) there is a

feasible solution of (A) with objective value not lower.

(b) Derive the dual LP, and show that it is equivalent to the problem

max b>z − ‖z‖∞
s.t. A>z + c = 0.

(2)

What is the relation between the optimal value of z of problem (2) and the optimal

value of the variables in the dual LP derived?

(c) Let x be feasible for (1) (i.e., ‖Ax+ b‖1 ≤ 1) and let z be feasible for (2) (i.e.,

A>z + c = 0). Using only the weak duality theorem, what can you argue about the

relation between c>x and b>z − ‖z‖∞?
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2. Optimization Modeling

An economy consists of sectors. You can think of a sector as a process that consumes

resources at the start of the year and produces other resources at the end of the year. We

can also choose an activity level for each sector, which determines how much consumption

and production happens in each sector.

Example. Here is an example with two sectors and three resources:

• Sectors: {house-building, road-building}

• Resources: {wheat,brick, ore}

At an activity level of 1, suppose we have the following:

• House-building consumes (1 brick, 1 ore) and produces (2 wheat, 2 brick, 2 ore).

• Road-building consumes (1 wheat, 1 brick) and produces (1 ore, 2 brick).

We can think of the consumption and production levels above as rates. To find the

actual consumption and production, we multiply by the activity level. For example,

if we choose an activity level of 100 for house-building and 50 for road-building in

Year 1, then our economy behaves as follows:

• Total resources consumed by all sectors: (50 wheat, 150 brick, 100 ore)

• Total resources produced by all sectors: (200 wheat, 300 brick, 250 ore)

Every year, we must choose activity levels for the sectors, with the goal of making every

sector grow. That is, we want the activity level of each sector to increase compared

to the previous year. However, we cannot grow too fast: the consumption of a given

year cannot exceed the production in the previous year. For example, if we decided

to triple our activity levels for Year 2, this would require consuming (150 wheat, 450

brick, 300 ore). This is not possible because we produced an insufficient amount of

brick and ore (300 and 250 respectively) in the previous year.

For this problem, we will look at optimizing growth over a two-year planning period.

Specifically, we assume:

• There are m resources i = 1, . . . ,m and n sectors j = 1, . . . , n.

• For sector j, resource i is consumed at a rate bij and produced at a rate aij . These

are fixed quantities known ahead of time.

• Sector j has activity level x
(1)
j in Year 1 and x

(2)
j in Year 2. These activity levels are

things we must decide on.
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• Year 1 activity levels are strictly positive and Year 2 activity levels are nonnegative.

• The consumption in Year 2 must not exceed the production in Year 1.

Define the growth rate of sector j as x
(2)
j /x

(1)
j . Our objective will be to maximize the

minimum growth rate, which is the growth rate of the sector with the smallest growth

rate. This ensures that every sector is growing. Finally, here are the problems:

(a) Formulate the above as an optimization problem. That is, specify the parameters,

decision variables, constraints, and objective function.

(b) The formulation from Part (a) includes the strict inequalities x
(1)
j > 0 for j = 1, . . . , n.

Explain why strict inequalities are generally undesirable in an optimization model.

Also explain how and why the strict inequalities can be replaced by x
(1)
j ≥ 1 without

any loss of generality.

(c) Suppose we want to know whether it’s possible to achieve a minimum growth rate

of r. Explain how the problem of Part (a) can be reformulated as a linear program

where r appears as a parameter.

(d) Consider maximizing the total annual growth
(∑n

j=1 x
(2)
j

)/(∑n
j=1 x

(1)
j

)
instead. In

this scenario, we allow activity levels in Year 1 to be zero, so long as the total activity

in Year 1 is strictly positive. Formulate this problem as a linear program.
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3. Integer Optimization

Let S = {v1, . . . , vT } ⊆ Rn be a finite (possibly huge) set of points and consider the

optimization problem:

z∗ = min c>x (3)

s.t. Ax ≥ b (4)

x ∈ S (5)

where A is an m × n matrix and b ∈ Rm. Assume that this optimization problem has a

feasible solution, so that z∗ is finite. For λ ∈ Rm
+ , define:

z(λ) = λ>b+ min (c> − λ>A)x

s.t. x ∈ S

Finally, define:

zLD = max{z(λ) : λ ∈ Rm
+}

The number of points that will be allocated to each part when grading are given in brackets

at the beginning of each part.

(a) [2 pts] Show that z(λ) ≤ z∗ for any λ ∈ Rm
+ .

(b) [4 pts] Recall that conv(S) is notation for the convex hull of S. Show that

zLD = min c>x

s.t. Ax ≥ b
x ∈ conv(S).

[Hint: Start by formulating the problem max{z(λ) : λ ∈ Rm
+} as a linear program,

possibly by adding additional decision variable(s).]

(c) [2 pts] Provide an example where zLD < z∗. [Hint: this can be done with n = 1 and

a set S containing two points.]

(d) [1 pt] Suppose S = {x ∈ Zn
+ : Dx ≥ d}. Use the result from part (b) to show that

the zLD ≥ zLP , where zLP is the optimal value of the linear programming relaxation

of (3)-(5):

zLP = min c>x

s.t. Ax ≥ b
Dx ≥ d
x ∈ Rn

+

(e) [1 pt] Using the definition of S from part (d), suppose that the matrix D is totally

unimodular and d is an integer vector. Again using results from previous parts, argue

that in this case zLD = zLP .
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4. Nonlinear Optimization

Consider the inexact Newton method applied to the problem of minimizing a twice Lips-

chitz continuously differentiable function f : Rn → R. The search direction pk at iteration

k = 0, 1, 2, . . . satisfies the formula

Hkpk + gk = rk,

where Hk = ∇2f(xk), gk = ∇f(xk), and the residual vector rk satisfies

‖rk‖ ≤ ηk‖∇f(xk)‖,

for some ηk ∈ [0, η̄], where η̄ ∈ [0, 1).

Assume that there is a local minimizer x∗ at which second-order sufficient conditions are

satisfied, that is, ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Assume that the smallest

eigenvalue of ∇2f(x∗) is µ and the largest is L, with 0 < µ < L.

Consider the full-step version of the method, in which we define xk+1 = xk + pk (so that

gk+1 = ∇f(xk+1)).

(a) Show that there are positive quantities ρ > 0 and M1 > 0 and M2 > 0 such that if

‖xk − x∗‖ ≤ ρ, we have that

‖pk‖ ≤M1‖gk‖,
‖gk+1‖
‖gk‖

≤ ηk +M2‖gk‖.

(You do not need to find specific values for ρ, M1, and M2, just explain why such

quantities must exist.)

(b) Consider the Taylor series expansion

f(xk+1) = f(xk) + gTk pk +
1

2
pTkHkpk +O(‖pk‖3).

Express the sum of the first- and second-order terms
(
gTk pk + 1

2p
T
kHkpk

)
in terms of

H−1k , gk, and rk.

(c) Using the result of (b), find a condition on rk of the form ‖rk‖ ≤ T‖gk‖ (for some

T > 0) that guarantees gTk pk + 1
2p

T
kHkpk ≤ 0 when xk is sufficiently close to x∗.

Express T in terms of L, µ.

(d) Similarly to part (c), find a value T̄ such that when ‖rk‖ ≤ T̄‖gk‖ and xk is sufficiently

close to x∗, pk is a descent direction for f , that is, gTk pk < 0.
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